Март 2011
Пн Вт Ср Чт Пт Сб Вс
« Фев   Апр »
 123456
78910111213
14151617181920
21222324252627
28293031  
Страницы

27.03.2011

Из практических выводов

Из практических выводовОдним из практических выводов из приведенной гипотезы является то, что специализированные ткани производятся толь­ко специализированными клетками. Следовательно, в условиях регенераций, например при заживлении ран, неспециализиро­ванные фибробласты или их предшественники, мигрирующие в дефект из крови или других тканей, не могут обеспечить спе­цифическое строение новообразованной ткани и формируют в большинстве случаев рубец. С этой точки зрения воздействия на репаративный процесс должны быть направлены на создание условий, обеспечивающих преимущественный вклад специали­зированных клеток в регенерацию ткани, или поиски факторов, влияющих на дифференцировку клеток в специализированные формы. 225 Ретикулярные и аргирофильиые волокна. Кроме типич­ных коллагеновых волокон, в соединительной ткани (строме) ряда органов (лимфатические узлы и селезенка, легкие, сосуды, сосочковый слой дермы, слизистые оболочки, печень, почки, поджелудочная железа и др.) встречаются другие волокна, впер­вые обозначенные С. Купфером (1876) как ретикулярные. В оте­чественной литературе более принят термин «ретикулиновые волокна», так как считалось, что в их основе лежит особый белок — ретикулин. Ретикулярные волокна отличаются от KB меньшей толщиной, ветвистостью и анастомозированием с об­разованием сети волокон, особенно в лимфатических узлах и селезенке, что и обусловило их название. Главной особенностью ретикулярных волокон является аргирофилия, т. е. способность импрегнироваться серебром, и отсутствие фуксинофилии при окраске по Ван-Гизону; они дают также более интенсивную ШИК-реакцию и анизотропию в поляризованном свете.

Феномен

ФеноменЭтот феномен требует объяснения, так как в ТЭМ, как пра­вило, края продольных срезов коллагеновых фибрилл неволни­сты, как можно было бы ожидать, если учитывать наружную гофрированность. Можно предположить несколько возможных причин такого несоответствия: 1) различную степень сокраще­ния коллагеновых фибрилл при подготовке тканей к ТЭМ, СЭМ Рис. 37. СЭГ соединительной тканн склеры. Видны коллагеновые волокна (KB), состоящие из спиралевидно скрученных фибрилл. Между волокнами неориентированная сеть фибрилл (КФ). X»uw-и снятии реплики; 2) отложение напыленных металлов преиму­щественно над той полосой периода, над которой больше кон­центрация заряженных групп; 3) спиралевидное «скручение» фибриллы с шагом, равным основному периоду; 4) маскирова­ние гофрированности в ТЭМ протеогликановым «чехлом» фиб­риллы. Требуются дальнейшие исследования в этом направле­нии, однако нельзя исключить, что феномен гофрированности имеет определенное отношение к возможности обратимого удли­нения и сокращения коллагеновых фибрилл, о которой мы пи­сали выше. Одним из важнейших принципов строения соединительной ткани на тканевом уровне организации, подтверждаемым СЭМ, является соответствие архитектоники функциональным особен­ностям ткани, прежде всего механической функции. Известно, что такие биомеханические свойства, как прочность на разрыв и модуль Юнга в отдельных коллагеновых волокнах, выделенных из разных тканей, различаются незначительно [Александер Р., 1970]. Следовательно, главной причиной механических разли­чий являются разные геометрические способы укладки волокон и пучков, т. е. архитектура тканей, а также характер взаимо­действия коллагена и других компонентов. Основным фактором, определяющим архитектонику волокон, являются сила и топо­графическое распределение действующих на ткань нагрузок. Так, в сухожилиях и связках, которые испытывают в основном растягивающие нагрузки, фибриллы, волокна и пучки волокон первого и второго порядка расположены в основном параллель­но длинной оси сухожилия. Исследование в СЭМ обнаруживает волнистость пучков нерастянутого сухожилия [Hunter J. A., Fin­ley J. В., 1973]. Первый этап растяжения происходит за счет сглаживания волнистости, а второй — за счет удлинения самих волокон и фибрилл [Vidik А., 1973]. В коже коллагеновые об­разования распределены в виде компактной сети дугообразных волокон и пучков, переплетающихся между собой . Сложная архитектоника этой сети определяется локальным рас­пределением механических напряжений: она меняется в зави­симости от направления лангеровских линий наименьшей рас­тяжимости, глубины и расположения в разных участках кожного покрова. Е. В. Виноградова и И. Н. Михайлов (1978) различают пластообразный, ромбовидный, сложно-петлистый и смешанные типы плетения волокон дермы. В суставном хряще обнаружено аркадное строение волокон [Clark A. R., 1971; Павлова М. Н., 1979]. Характерное переплетение дугообразных пучков с обра­зованием ячеистой сети описано в клапанах сердца [Крым­ский Л. Д. и др., 1975]. В адвентиции крупных сосудов нами обнаружена пластинчатая структура коллагеновых образований, что соответствует ее функции сопротивления растягиванию стен­ки сосуда (см. раздел 2.3.3). Та же закономерность, как пока­зали наши исследования совместно с Р. Ю. Волколаковой [Шехтер А. Б. и др., 1980], наблюдается в склере глаз че­ловека.