02.04.2011
РОЛЬ ВЗАИМОДЕЙСТВИЯ КЛЕТОК В РЕГУЛЯЦИИ ГОМЕОСТАЗА
311 Принцип иерархичности систем организации и регуляции; эпителио-мезенхимные взаимоотношения. Одним из основных принципов системного подхода является необходимостьисследования процессов, связывающих элементы системы с ее целями. В приложении к соединительной ткани за «цели» системы следует принять ее основные функции, которые рассматривались нами во введении. Учитывая, что соединительная ткань вместе с кровью является тканью внутренней среды, одной из основных ее функций («целей») является поддержание гомеостаза. W. Cannon (1920), предложивший этот термин, понимал под ним активное равновесие внутренней среды, обусловливающее ее стабильность и униформность. Поскольку стабильность в живом организме, как и в любой развивающейся открытой системе, обеспечивается динамическими, а не статическими процессами, позже был введен термин «гомеодсинез». Гомеостаз и гомеокинез реализуются благодаря совокупности систем регуляции, которые в зависимости от интенсивности воздействия факторов внешней среды включают те или другие механизмы адаптации. Процессы, происходящие в биологических системах, обычно рассматриваются в зависимости от уровней организации живого: биосферного, популяционно-видового, организменного, органного, тканевого, клеточного, субклеточного (органоидного), молекулярного, субмолекулярного. На каждом уровне существуют различные системы регуляции, относительно автономные, но взаимодействующие между собой и также построенные по иерархическому принципу. На двух высших уровнях организации живого действуют общебиологические закономерности, прежде всего эволюционные законы Дарвина, а в человеческой популяции — и социальные законы. На уровне целостного организма осуществляется центральная регуляция: нервная, нейросекреторная, эндокринная, адаптационный синдром Селье и др. Важную роль играют также циркулирующие в крови медиаторы типа веществ систем комплемента, фактора Хагемана, гемокоагуляции. На органно – тканевом и клеточном уровнях эти регуляторные системы продолжают действовать, однако большое значение (особенно на тканевом уровне) приобретают локальные системы ауторегуля – ции, реализуемые путем взаимодействия клеток. На субклеточном и молекулярном уровнях действуют особые, во многом не познанные молекулярные системы регуляции обмена, внутриклеточной и молекулярной регенерации, клеточной репродукции, находящиеся под контролем более высоких уровней регуляции [Саркисов Д. С, 1977].
Согласно корпускулярной модели
Согласно корпускулярной модели [Partridge S. М., 1966; Veis-Fogh Т., Anderson S. О., 1970], эластин состоит из отдельных глобулярных частиц размером около 5 нм, соответствующих по молекулярной массе относительной индивидуальной молекуле тропоэластина (74 000—-75 000 дальтон). Гидрофобные остатки повернуты внутрь глобулы, а гидрофильные остаются снаружи. Эластин, растворимый в воде, представляет собой двухфазную систему, как бы состоящую из «капель масла», которые сопротивляются изменению положения, так как при натяжении сферические глобулы становятся элиптоидными и соприкасаются, что усиливает гидрофобность системы. Близка к этому и модель «oiled coil» («масляная спираль»), предложенная W. R. Gray и соавт. (1973). Вместо глобул в ней предусмотрены спирали с гибкими и ригидными (содержащими десмозиновые поперечные связи) участками. В последнее время большое распространение получили фила – ментарные модели строения эластина, основанные на данных изучения негативно окрашенных очищенных образцов эластина в электронном микроскопе [Сох В. A. et al., 1974; Gotte L. et al., 1974; 1977; Urry D. W., 1974, 1978; Volpin D., 1977]. При изучении коацерватов эластина, фиксированного в состоянии расслабления, установлено, что он состоит из парных расположенных параллельно друг другу нитей диаметром 1,5 нм, расстояние между которыми составляет 3—4 нм. Через каждые 3—3,5 нм имеются центры уплотнения, которые создают впеча тление периодичности. При фиксации молекул эластина в состоянии натяжения толщина нитей возрастает (она становится равной 3—5 нм), что объясняется сближением нитей диаметром 1,5 нм друг с другом. Одновременно происходит увеличение длины периода между центрами уплотнения: она становится равной 4—4,5 нм. Такие наблюдения позволили предположить, что в зрелом эластине отдельные молекулы тропоэластина упорядочены в сеть параллельных друг другу цепей, попарно соединенных друг с другом при помощи ковалентных поперечных связей, в области которых формируются центры уплотнения, в то время как соседние пары не связаны между собой.